3.239 \(\int \frac {x^4}{(d+e x^2) (a+c x^4)} \, dx\)

Optimal. Leaf size=336 \[ \frac {\sqrt [4]{a} \left (\sqrt {a} e+\sqrt {c} d\right ) \log \left (-\sqrt {2} \sqrt [4]{a} \sqrt [4]{c} x+\sqrt {a}+\sqrt {c} x^2\right )}{4 \sqrt {2} c^{3/4} \left (a e^2+c d^2\right )}-\frac {\sqrt [4]{a} \left (\sqrt {a} e+\sqrt {c} d\right ) \log \left (\sqrt {2} \sqrt [4]{a} \sqrt [4]{c} x+\sqrt {a}+\sqrt {c} x^2\right )}{4 \sqrt {2} c^{3/4} \left (a e^2+c d^2\right )}+\frac {\sqrt [4]{a} \left (\sqrt {c} d-\sqrt {a} e\right ) \tan ^{-1}\left (1-\frac {\sqrt {2} \sqrt [4]{c} x}{\sqrt [4]{a}}\right )}{2 \sqrt {2} c^{3/4} \left (a e^2+c d^2\right )}-\frac {\sqrt [4]{a} \left (\sqrt {c} d-\sqrt {a} e\right ) \tan ^{-1}\left (\frac {\sqrt {2} \sqrt [4]{c} x}{\sqrt [4]{a}}+1\right )}{2 \sqrt {2} c^{3/4} \left (a e^2+c d^2\right )}+\frac {d^{3/2} \tan ^{-1}\left (\frac {\sqrt {e} x}{\sqrt {d}}\right )}{\sqrt {e} \left (a e^2+c d^2\right )} \]

[Out]

-1/4*a^(1/4)*arctan(-1+c^(1/4)*x*2^(1/2)/a^(1/4))*(-e*a^(1/2)+d*c^(1/2))/c^(3/4)/(a*e^2+c*d^2)*2^(1/2)-1/4*a^(
1/4)*arctan(1+c^(1/4)*x*2^(1/2)/a^(1/4))*(-e*a^(1/2)+d*c^(1/2))/c^(3/4)/(a*e^2+c*d^2)*2^(1/2)+1/8*a^(1/4)*ln(-
a^(1/4)*c^(1/4)*x*2^(1/2)+a^(1/2)+x^2*c^(1/2))*(e*a^(1/2)+d*c^(1/2))/c^(3/4)/(a*e^2+c*d^2)*2^(1/2)-1/8*a^(1/4)
*ln(a^(1/4)*c^(1/4)*x*2^(1/2)+a^(1/2)+x^2*c^(1/2))*(e*a^(1/2)+d*c^(1/2))/c^(3/4)/(a*e^2+c*d^2)*2^(1/2)+d^(3/2)
*arctan(x*e^(1/2)/d^(1/2))/(a*e^2+c*d^2)/e^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.27, antiderivative size = 336, normalized size of antiderivative = 1.00, number of steps used = 12, number of rules used = 8, integrand size = 22, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.364, Rules used = {1288, 205, 1168, 1162, 617, 204, 1165, 628} \[ \frac {\sqrt [4]{a} \left (\sqrt {a} e+\sqrt {c} d\right ) \log \left (-\sqrt {2} \sqrt [4]{a} \sqrt [4]{c} x+\sqrt {a}+\sqrt {c} x^2\right )}{4 \sqrt {2} c^{3/4} \left (a e^2+c d^2\right )}-\frac {\sqrt [4]{a} \left (\sqrt {a} e+\sqrt {c} d\right ) \log \left (\sqrt {2} \sqrt [4]{a} \sqrt [4]{c} x+\sqrt {a}+\sqrt {c} x^2\right )}{4 \sqrt {2} c^{3/4} \left (a e^2+c d^2\right )}+\frac {\sqrt [4]{a} \left (\sqrt {c} d-\sqrt {a} e\right ) \tan ^{-1}\left (1-\frac {\sqrt {2} \sqrt [4]{c} x}{\sqrt [4]{a}}\right )}{2 \sqrt {2} c^{3/4} \left (a e^2+c d^2\right )}-\frac {\sqrt [4]{a} \left (\sqrt {c} d-\sqrt {a} e\right ) \tan ^{-1}\left (\frac {\sqrt {2} \sqrt [4]{c} x}{\sqrt [4]{a}}+1\right )}{2 \sqrt {2} c^{3/4} \left (a e^2+c d^2\right )}+\frac {d^{3/2} \tan ^{-1}\left (\frac {\sqrt {e} x}{\sqrt {d}}\right )}{\sqrt {e} \left (a e^2+c d^2\right )} \]

Antiderivative was successfully verified.

[In]

Int[x^4/((d + e*x^2)*(a + c*x^4)),x]

[Out]

(d^(3/2)*ArcTan[(Sqrt[e]*x)/Sqrt[d]])/(Sqrt[e]*(c*d^2 + a*e^2)) + (a^(1/4)*(Sqrt[c]*d - Sqrt[a]*e)*ArcTan[1 -
(Sqrt[2]*c^(1/4)*x)/a^(1/4)])/(2*Sqrt[2]*c^(3/4)*(c*d^2 + a*e^2)) - (a^(1/4)*(Sqrt[c]*d - Sqrt[a]*e)*ArcTan[1
+ (Sqrt[2]*c^(1/4)*x)/a^(1/4)])/(2*Sqrt[2]*c^(3/4)*(c*d^2 + a*e^2)) + (a^(1/4)*(Sqrt[c]*d + Sqrt[a]*e)*Log[Sqr
t[a] - Sqrt[2]*a^(1/4)*c^(1/4)*x + Sqrt[c]*x^2])/(4*Sqrt[2]*c^(3/4)*(c*d^2 + a*e^2)) - (a^(1/4)*(Sqrt[c]*d + S
qrt[a]*e)*Log[Sqrt[a] + Sqrt[2]*a^(1/4)*c^(1/4)*x + Sqrt[c]*x^2])/(4*Sqrt[2]*c^(3/4)*(c*d^2 + a*e^2))

Rule 204

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> -Simp[ArcTan[(Rt[-b, 2]*x)/Rt[-a, 2]]/(Rt[-a, 2]*Rt[-b, 2]), x] /
; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rule 205

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]*ArcTan[x/Rt[a/b, 2]])/a, x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rule 617

Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*Simplify[(a*c)/b^2]}, Dist[-2/b, Sub
st[Int[1/(q - x^2), x], x, 1 + (2*c*x)/b], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /;
 FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 628

Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Simp[(d*Log[RemoveContent[a + b*x +
c*x^2, x]])/b, x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[2*c*d - b*e, 0]

Rule 1162

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[(2*d)/e, 2]}, Dist[e/(2*c), Int[1/S
imp[d/e + q*x + x^2, x], x], x] + Dist[e/(2*c), Int[1/Simp[d/e - q*x + x^2, x], x], x]] /; FreeQ[{a, c, d, e},
 x] && EqQ[c*d^2 - a*e^2, 0] && PosQ[d*e]

Rule 1165

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[(-2*d)/e, 2]}, Dist[e/(2*c*q), Int[
(q - 2*x)/Simp[d/e + q*x - x^2, x], x], x] + Dist[e/(2*c*q), Int[(q + 2*x)/Simp[d/e - q*x - x^2, x], x], x]] /
; FreeQ[{a, c, d, e}, x] && EqQ[c*d^2 - a*e^2, 0] && NegQ[d*e]

Rule 1168

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[a*c, 2]}, Dist[(d*q + a*e)/(2*a*c),
 Int[(q + c*x^2)/(a + c*x^4), x], x] + Dist[(d*q - a*e)/(2*a*c), Int[(q - c*x^2)/(a + c*x^4), x], x]] /; FreeQ
[{a, c, d, e}, x] && NeQ[c*d^2 + a*e^2, 0] && NeQ[c*d^2 - a*e^2, 0] && NegQ[-(a*c)]

Rule 1288

Int[(((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^2)^(q_.))/((a_) + (c_.)*(x_)^4), x_Symbol] :> Int[ExpandIntegrand[(
(f*x)^m*(d + e*x^2)^q)/(a + c*x^4), x], x] /; FreeQ[{a, c, d, e, f, m}, x] && IntegerQ[q] && IntegerQ[m]

Rubi steps

\begin {align*} \int \frac {x^4}{\left (d+e x^2\right ) \left (a+c x^4\right )} \, dx &=\int \left (\frac {d^2}{\left (c d^2+a e^2\right ) \left (d+e x^2\right )}-\frac {a \left (d-e x^2\right )}{\left (c d^2+a e^2\right ) \left (a+c x^4\right )}\right ) \, dx\\ &=-\frac {a \int \frac {d-e x^2}{a+c x^4} \, dx}{c d^2+a e^2}+\frac {d^2 \int \frac {1}{d+e x^2} \, dx}{c d^2+a e^2}\\ &=\frac {d^{3/2} \tan ^{-1}\left (\frac {\sqrt {e} x}{\sqrt {d}}\right )}{\sqrt {e} \left (c d^2+a e^2\right )}-\frac {\left (a \left (\frac {\sqrt {c} d}{\sqrt {a}}-e\right )\right ) \int \frac {\sqrt {a} \sqrt {c}+c x^2}{a+c x^4} \, dx}{2 c \left (c d^2+a e^2\right )}-\frac {\left (a \left (\frac {\sqrt {c} d}{\sqrt {a}}+e\right )\right ) \int \frac {\sqrt {a} \sqrt {c}-c x^2}{a+c x^4} \, dx}{2 c \left (c d^2+a e^2\right )}\\ &=\frac {d^{3/2} \tan ^{-1}\left (\frac {\sqrt {e} x}{\sqrt {d}}\right )}{\sqrt {e} \left (c d^2+a e^2\right )}-\frac {\left (a \left (\frac {\sqrt {c} d}{\sqrt {a}}-e\right )\right ) \int \frac {1}{\frac {\sqrt {a}}{\sqrt {c}}-\frac {\sqrt {2} \sqrt [4]{a} x}{\sqrt [4]{c}}+x^2} \, dx}{4 c \left (c d^2+a e^2\right )}-\frac {\left (a \left (\frac {\sqrt {c} d}{\sqrt {a}}-e\right )\right ) \int \frac {1}{\frac {\sqrt {a}}{\sqrt {c}}+\frac {\sqrt {2} \sqrt [4]{a} x}{\sqrt [4]{c}}+x^2} \, dx}{4 c \left (c d^2+a e^2\right )}+\frac {\left (\sqrt [4]{a} \left (\sqrt {c} d+\sqrt {a} e\right )\right ) \int \frac {\frac {\sqrt {2} \sqrt [4]{a}}{\sqrt [4]{c}}+2 x}{-\frac {\sqrt {a}}{\sqrt {c}}-\frac {\sqrt {2} \sqrt [4]{a} x}{\sqrt [4]{c}}-x^2} \, dx}{4 \sqrt {2} c^{3/4} \left (c d^2+a e^2\right )}+\frac {\left (\sqrt [4]{a} \left (\sqrt {c} d+\sqrt {a} e\right )\right ) \int \frac {\frac {\sqrt {2} \sqrt [4]{a}}{\sqrt [4]{c}}-2 x}{-\frac {\sqrt {a}}{\sqrt {c}}+\frac {\sqrt {2} \sqrt [4]{a} x}{\sqrt [4]{c}}-x^2} \, dx}{4 \sqrt {2} c^{3/4} \left (c d^2+a e^2\right )}\\ &=\frac {d^{3/2} \tan ^{-1}\left (\frac {\sqrt {e} x}{\sqrt {d}}\right )}{\sqrt {e} \left (c d^2+a e^2\right )}+\frac {\sqrt [4]{a} \left (\sqrt {c} d+\sqrt {a} e\right ) \log \left (\sqrt {a}-\sqrt {2} \sqrt [4]{a} \sqrt [4]{c} x+\sqrt {c} x^2\right )}{4 \sqrt {2} c^{3/4} \left (c d^2+a e^2\right )}-\frac {\sqrt [4]{a} \left (\sqrt {c} d+\sqrt {a} e\right ) \log \left (\sqrt {a}+\sqrt {2} \sqrt [4]{a} \sqrt [4]{c} x+\sqrt {c} x^2\right )}{4 \sqrt {2} c^{3/4} \left (c d^2+a e^2\right )}-\frac {\left (a^{3/4} \left (\frac {\sqrt {c} d}{\sqrt {a}}-e\right )\right ) \operatorname {Subst}\left (\int \frac {1}{-1-x^2} \, dx,x,1-\frac {\sqrt {2} \sqrt [4]{c} x}{\sqrt [4]{a}}\right )}{2 \sqrt {2} c^{3/4} \left (c d^2+a e^2\right )}+\frac {\left (a^{3/4} \left (\frac {\sqrt {c} d}{\sqrt {a}}-e\right )\right ) \operatorname {Subst}\left (\int \frac {1}{-1-x^2} \, dx,x,1+\frac {\sqrt {2} \sqrt [4]{c} x}{\sqrt [4]{a}}\right )}{2 \sqrt {2} c^{3/4} \left (c d^2+a e^2\right )}\\ &=\frac {d^{3/2} \tan ^{-1}\left (\frac {\sqrt {e} x}{\sqrt {d}}\right )}{\sqrt {e} \left (c d^2+a e^2\right )}+\frac {a^{3/4} \left (\frac {\sqrt {c} d}{\sqrt {a}}-e\right ) \tan ^{-1}\left (1-\frac {\sqrt {2} \sqrt [4]{c} x}{\sqrt [4]{a}}\right )}{2 \sqrt {2} c^{3/4} \left (c d^2+a e^2\right )}-\frac {a^{3/4} \left (\frac {\sqrt {c} d}{\sqrt {a}}-e\right ) \tan ^{-1}\left (1+\frac {\sqrt {2} \sqrt [4]{c} x}{\sqrt [4]{a}}\right )}{2 \sqrt {2} c^{3/4} \left (c d^2+a e^2\right )}+\frac {\sqrt [4]{a} \left (\sqrt {c} d+\sqrt {a} e\right ) \log \left (\sqrt {a}-\sqrt {2} \sqrt [4]{a} \sqrt [4]{c} x+\sqrt {c} x^2\right )}{4 \sqrt {2} c^{3/4} \left (c d^2+a e^2\right )}-\frac {\sqrt [4]{a} \left (\sqrt {c} d+\sqrt {a} e\right ) \log \left (\sqrt {a}+\sqrt {2} \sqrt [4]{a} \sqrt [4]{c} x+\sqrt {c} x^2\right )}{4 \sqrt {2} c^{3/4} \left (c d^2+a e^2\right )}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.15, size = 233, normalized size = 0.69 \[ \frac {\sqrt {2} \sqrt [4]{a} \sqrt {e} \left (\left (\sqrt {a} e+\sqrt {c} d\right ) \left (\log \left (-\sqrt {2} \sqrt [4]{a} \sqrt [4]{c} x+\sqrt {a}+\sqrt {c} x^2\right )-\log \left (\sqrt {2} \sqrt [4]{a} \sqrt [4]{c} x+\sqrt {a}+\sqrt {c} x^2\right )\right )+2 \left (\sqrt {c} d-\sqrt {a} e\right ) \tan ^{-1}\left (1-\frac {\sqrt {2} \sqrt [4]{c} x}{\sqrt [4]{a}}\right )+\left (2 \sqrt {a} e-2 \sqrt {c} d\right ) \tan ^{-1}\left (\frac {\sqrt {2} \sqrt [4]{c} x}{\sqrt [4]{a}}+1\right )\right )+8 c^{3/4} d^{3/2} \tan ^{-1}\left (\frac {\sqrt {e} x}{\sqrt {d}}\right )}{8 c^{3/4} \sqrt {e} \left (a e^2+c d^2\right )} \]

Antiderivative was successfully verified.

[In]

Integrate[x^4/((d + e*x^2)*(a + c*x^4)),x]

[Out]

(8*c^(3/4)*d^(3/2)*ArcTan[(Sqrt[e]*x)/Sqrt[d]] + Sqrt[2]*a^(1/4)*Sqrt[e]*(2*(Sqrt[c]*d - Sqrt[a]*e)*ArcTan[1 -
 (Sqrt[2]*c^(1/4)*x)/a^(1/4)] + (-2*Sqrt[c]*d + 2*Sqrt[a]*e)*ArcTan[1 + (Sqrt[2]*c^(1/4)*x)/a^(1/4)] + (Sqrt[c
]*d + Sqrt[a]*e)*(Log[Sqrt[a] - Sqrt[2]*a^(1/4)*c^(1/4)*x + Sqrt[c]*x^2] - Log[Sqrt[a] + Sqrt[2]*a^(1/4)*c^(1/
4)*x + Sqrt[c]*x^2])))/(8*c^(3/4)*Sqrt[e]*(c*d^2 + a*e^2))

________________________________________________________________________________________

fricas [B]  time = 1.68, size = 4040, normalized size = 12.02 \[ \text {result too large to display} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^4/(e*x^2+d)/(c*x^4+a),x, algorithm="fricas")

[Out]

[1/4*((c*d^2 + a*e^2)*sqrt((2*a*d*e + (c^3*d^4 + 2*a*c^2*d^2*e^2 + a^2*c*e^4)*sqrt(-(a*c^2*d^4 - 2*a^2*c*d^2*e
^2 + a^3*e^4)/(c^7*d^8 + 4*a*c^6*d^6*e^2 + 6*a^2*c^5*d^4*e^4 + 4*a^3*c^4*d^2*e^6 + a^4*c^3*e^8)))/(c^3*d^4 + 2
*a*c^2*d^2*e^2 + a^2*c*e^4))*log(-(c*d^2 - a*e^2)*x + (c^2*d^3 - a*c*d*e^2 + (c^4*d^4*e + 2*a*c^3*d^2*e^3 + a^
2*c^2*e^5)*sqrt(-(a*c^2*d^4 - 2*a^2*c*d^2*e^2 + a^3*e^4)/(c^7*d^8 + 4*a*c^6*d^6*e^2 + 6*a^2*c^5*d^4*e^4 + 4*a^
3*c^4*d^2*e^6 + a^4*c^3*e^8)))*sqrt((2*a*d*e + (c^3*d^4 + 2*a*c^2*d^2*e^2 + a^2*c*e^4)*sqrt(-(a*c^2*d^4 - 2*a^
2*c*d^2*e^2 + a^3*e^4)/(c^7*d^8 + 4*a*c^6*d^6*e^2 + 6*a^2*c^5*d^4*e^4 + 4*a^3*c^4*d^2*e^6 + a^4*c^3*e^8)))/(c^
3*d^4 + 2*a*c^2*d^2*e^2 + a^2*c*e^4))) - (c*d^2 + a*e^2)*sqrt((2*a*d*e + (c^3*d^4 + 2*a*c^2*d^2*e^2 + a^2*c*e^
4)*sqrt(-(a*c^2*d^4 - 2*a^2*c*d^2*e^2 + a^3*e^4)/(c^7*d^8 + 4*a*c^6*d^6*e^2 + 6*a^2*c^5*d^4*e^4 + 4*a^3*c^4*d^
2*e^6 + a^4*c^3*e^8)))/(c^3*d^4 + 2*a*c^2*d^2*e^2 + a^2*c*e^4))*log(-(c*d^2 - a*e^2)*x - (c^2*d^3 - a*c*d*e^2
+ (c^4*d^4*e + 2*a*c^3*d^2*e^3 + a^2*c^2*e^5)*sqrt(-(a*c^2*d^4 - 2*a^2*c*d^2*e^2 + a^3*e^4)/(c^7*d^8 + 4*a*c^6
*d^6*e^2 + 6*a^2*c^5*d^4*e^4 + 4*a^3*c^4*d^2*e^6 + a^4*c^3*e^8)))*sqrt((2*a*d*e + (c^3*d^4 + 2*a*c^2*d^2*e^2 +
 a^2*c*e^4)*sqrt(-(a*c^2*d^4 - 2*a^2*c*d^2*e^2 + a^3*e^4)/(c^7*d^8 + 4*a*c^6*d^6*e^2 + 6*a^2*c^5*d^4*e^4 + 4*a
^3*c^4*d^2*e^6 + a^4*c^3*e^8)))/(c^3*d^4 + 2*a*c^2*d^2*e^2 + a^2*c*e^4))) + (c*d^2 + a*e^2)*sqrt((2*a*d*e - (c
^3*d^4 + 2*a*c^2*d^2*e^2 + a^2*c*e^4)*sqrt(-(a*c^2*d^4 - 2*a^2*c*d^2*e^2 + a^3*e^4)/(c^7*d^8 + 4*a*c^6*d^6*e^2
 + 6*a^2*c^5*d^4*e^4 + 4*a^3*c^4*d^2*e^6 + a^4*c^3*e^8)))/(c^3*d^4 + 2*a*c^2*d^2*e^2 + a^2*c*e^4))*log(-(c*d^2
 - a*e^2)*x + (c^2*d^3 - a*c*d*e^2 - (c^4*d^4*e + 2*a*c^3*d^2*e^3 + a^2*c^2*e^5)*sqrt(-(a*c^2*d^4 - 2*a^2*c*d^
2*e^2 + a^3*e^4)/(c^7*d^8 + 4*a*c^6*d^6*e^2 + 6*a^2*c^5*d^4*e^4 + 4*a^3*c^4*d^2*e^6 + a^4*c^3*e^8)))*sqrt((2*a
*d*e - (c^3*d^4 + 2*a*c^2*d^2*e^2 + a^2*c*e^4)*sqrt(-(a*c^2*d^4 - 2*a^2*c*d^2*e^2 + a^3*e^4)/(c^7*d^8 + 4*a*c^
6*d^6*e^2 + 6*a^2*c^5*d^4*e^4 + 4*a^3*c^4*d^2*e^6 + a^4*c^3*e^8)))/(c^3*d^4 + 2*a*c^2*d^2*e^2 + a^2*c*e^4))) -
 (c*d^2 + a*e^2)*sqrt((2*a*d*e - (c^3*d^4 + 2*a*c^2*d^2*e^2 + a^2*c*e^4)*sqrt(-(a*c^2*d^4 - 2*a^2*c*d^2*e^2 +
a^3*e^4)/(c^7*d^8 + 4*a*c^6*d^6*e^2 + 6*a^2*c^5*d^4*e^4 + 4*a^3*c^4*d^2*e^6 + a^4*c^3*e^8)))/(c^3*d^4 + 2*a*c^
2*d^2*e^2 + a^2*c*e^4))*log(-(c*d^2 - a*e^2)*x - (c^2*d^3 - a*c*d*e^2 - (c^4*d^4*e + 2*a*c^3*d^2*e^3 + a^2*c^2
*e^5)*sqrt(-(a*c^2*d^4 - 2*a^2*c*d^2*e^2 + a^3*e^4)/(c^7*d^8 + 4*a*c^6*d^6*e^2 + 6*a^2*c^5*d^4*e^4 + 4*a^3*c^4
*d^2*e^6 + a^4*c^3*e^8)))*sqrt((2*a*d*e - (c^3*d^4 + 2*a*c^2*d^2*e^2 + a^2*c*e^4)*sqrt(-(a*c^2*d^4 - 2*a^2*c*d
^2*e^2 + a^3*e^4)/(c^7*d^8 + 4*a*c^6*d^6*e^2 + 6*a^2*c^5*d^4*e^4 + 4*a^3*c^4*d^2*e^6 + a^4*c^3*e^8)))/(c^3*d^4
 + 2*a*c^2*d^2*e^2 + a^2*c*e^4))) + 2*d*sqrt(-d/e)*log((e*x^2 + 2*e*x*sqrt(-d/e) - d)/(e*x^2 + d)))/(c*d^2 + a
*e^2), 1/4*(4*d*sqrt(d/e)*arctan(e*x*sqrt(d/e)/d) + (c*d^2 + a*e^2)*sqrt((2*a*d*e + (c^3*d^4 + 2*a*c^2*d^2*e^2
 + a^2*c*e^4)*sqrt(-(a*c^2*d^4 - 2*a^2*c*d^2*e^2 + a^3*e^4)/(c^7*d^8 + 4*a*c^6*d^6*e^2 + 6*a^2*c^5*d^4*e^4 + 4
*a^3*c^4*d^2*e^6 + a^4*c^3*e^8)))/(c^3*d^4 + 2*a*c^2*d^2*e^2 + a^2*c*e^4))*log(-(c*d^2 - a*e^2)*x + (c^2*d^3 -
 a*c*d*e^2 + (c^4*d^4*e + 2*a*c^3*d^2*e^3 + a^2*c^2*e^5)*sqrt(-(a*c^2*d^4 - 2*a^2*c*d^2*e^2 + a^3*e^4)/(c^7*d^
8 + 4*a*c^6*d^6*e^2 + 6*a^2*c^5*d^4*e^4 + 4*a^3*c^4*d^2*e^6 + a^4*c^3*e^8)))*sqrt((2*a*d*e + (c^3*d^4 + 2*a*c^
2*d^2*e^2 + a^2*c*e^4)*sqrt(-(a*c^2*d^4 - 2*a^2*c*d^2*e^2 + a^3*e^4)/(c^7*d^8 + 4*a*c^6*d^6*e^2 + 6*a^2*c^5*d^
4*e^4 + 4*a^3*c^4*d^2*e^6 + a^4*c^3*e^8)))/(c^3*d^4 + 2*a*c^2*d^2*e^2 + a^2*c*e^4))) - (c*d^2 + a*e^2)*sqrt((2
*a*d*e + (c^3*d^4 + 2*a*c^2*d^2*e^2 + a^2*c*e^4)*sqrt(-(a*c^2*d^4 - 2*a^2*c*d^2*e^2 + a^3*e^4)/(c^7*d^8 + 4*a*
c^6*d^6*e^2 + 6*a^2*c^5*d^4*e^4 + 4*a^3*c^4*d^2*e^6 + a^4*c^3*e^8)))/(c^3*d^4 + 2*a*c^2*d^2*e^2 + a^2*c*e^4))*
log(-(c*d^2 - a*e^2)*x - (c^2*d^3 - a*c*d*e^2 + (c^4*d^4*e + 2*a*c^3*d^2*e^3 + a^2*c^2*e^5)*sqrt(-(a*c^2*d^4 -
 2*a^2*c*d^2*e^2 + a^3*e^4)/(c^7*d^8 + 4*a*c^6*d^6*e^2 + 6*a^2*c^5*d^4*e^4 + 4*a^3*c^4*d^2*e^6 + a^4*c^3*e^8))
)*sqrt((2*a*d*e + (c^3*d^4 + 2*a*c^2*d^2*e^2 + a^2*c*e^4)*sqrt(-(a*c^2*d^4 - 2*a^2*c*d^2*e^2 + a^3*e^4)/(c^7*d
^8 + 4*a*c^6*d^6*e^2 + 6*a^2*c^5*d^4*e^4 + 4*a^3*c^4*d^2*e^6 + a^4*c^3*e^8)))/(c^3*d^4 + 2*a*c^2*d^2*e^2 + a^2
*c*e^4))) + (c*d^2 + a*e^2)*sqrt((2*a*d*e - (c^3*d^4 + 2*a*c^2*d^2*e^2 + a^2*c*e^4)*sqrt(-(a*c^2*d^4 - 2*a^2*c
*d^2*e^2 + a^3*e^4)/(c^7*d^8 + 4*a*c^6*d^6*e^2 + 6*a^2*c^5*d^4*e^4 + 4*a^3*c^4*d^2*e^6 + a^4*c^3*e^8)))/(c^3*d
^4 + 2*a*c^2*d^2*e^2 + a^2*c*e^4))*log(-(c*d^2 - a*e^2)*x + (c^2*d^3 - a*c*d*e^2 - (c^4*d^4*e + 2*a*c^3*d^2*e^
3 + a^2*c^2*e^5)*sqrt(-(a*c^2*d^4 - 2*a^2*c*d^2*e^2 + a^3*e^4)/(c^7*d^8 + 4*a*c^6*d^6*e^2 + 6*a^2*c^5*d^4*e^4
+ 4*a^3*c^4*d^2*e^6 + a^4*c^3*e^8)))*sqrt((2*a*d*e - (c^3*d^4 + 2*a*c^2*d^2*e^2 + a^2*c*e^4)*sqrt(-(a*c^2*d^4
- 2*a^2*c*d^2*e^2 + a^3*e^4)/(c^7*d^8 + 4*a*c^6*d^6*e^2 + 6*a^2*c^5*d^4*e^4 + 4*a^3*c^4*d^2*e^6 + a^4*c^3*e^8)
))/(c^3*d^4 + 2*a*c^2*d^2*e^2 + a^2*c*e^4))) - (c*d^2 + a*e^2)*sqrt((2*a*d*e - (c^3*d^4 + 2*a*c^2*d^2*e^2 + a^
2*c*e^4)*sqrt(-(a*c^2*d^4 - 2*a^2*c*d^2*e^2 + a^3*e^4)/(c^7*d^8 + 4*a*c^6*d^6*e^2 + 6*a^2*c^5*d^4*e^4 + 4*a^3*
c^4*d^2*e^6 + a^4*c^3*e^8)))/(c^3*d^4 + 2*a*c^2*d^2*e^2 + a^2*c*e^4))*log(-(c*d^2 - a*e^2)*x - (c^2*d^3 - a*c*
d*e^2 - (c^4*d^4*e + 2*a*c^3*d^2*e^3 + a^2*c^2*e^5)*sqrt(-(a*c^2*d^4 - 2*a^2*c*d^2*e^2 + a^3*e^4)/(c^7*d^8 + 4
*a*c^6*d^6*e^2 + 6*a^2*c^5*d^4*e^4 + 4*a^3*c^4*d^2*e^6 + a^4*c^3*e^8)))*sqrt((2*a*d*e - (c^3*d^4 + 2*a*c^2*d^2
*e^2 + a^2*c*e^4)*sqrt(-(a*c^2*d^4 - 2*a^2*c*d^2*e^2 + a^3*e^4)/(c^7*d^8 + 4*a*c^6*d^6*e^2 + 6*a^2*c^5*d^4*e^4
 + 4*a^3*c^4*d^2*e^6 + a^4*c^3*e^8)))/(c^3*d^4 + 2*a*c^2*d^2*e^2 + a^2*c*e^4))))/(c*d^2 + a*e^2)]

________________________________________________________________________________________

giac [A]  time = 0.43, size = 327, normalized size = 0.97 \[ \frac {d^{\frac {3}{2}} \arctan \left (\frac {x e^{\frac {1}{2}}}{\sqrt {d}}\right ) e^{\left (-\frac {1}{2}\right )}}{c d^{2} + a e^{2}} - \frac {{\left (\left (a c^{3}\right )^{\frac {1}{4}} c^{2} d - \left (a c^{3}\right )^{\frac {3}{4}} e\right )} \arctan \left (\frac {\sqrt {2} {\left (2 \, x + \sqrt {2} \left (\frac {a}{c}\right )^{\frac {1}{4}}\right )}}{2 \, \left (\frac {a}{c}\right )^{\frac {1}{4}}}\right )}{2 \, {\left (\sqrt {2} c^{4} d^{2} + \sqrt {2} a c^{3} e^{2}\right )}} - \frac {{\left (\left (a c^{3}\right )^{\frac {1}{4}} c^{2} d - \left (a c^{3}\right )^{\frac {3}{4}} e\right )} \arctan \left (\frac {\sqrt {2} {\left (2 \, x - \sqrt {2} \left (\frac {a}{c}\right )^{\frac {1}{4}}\right )}}{2 \, \left (\frac {a}{c}\right )^{\frac {1}{4}}}\right )}{2 \, {\left (\sqrt {2} c^{4} d^{2} + \sqrt {2} a c^{3} e^{2}\right )}} - \frac {{\left (\left (a c^{3}\right )^{\frac {1}{4}} c^{2} d + \left (a c^{3}\right )^{\frac {3}{4}} e\right )} \log \left (x^{2} + \sqrt {2} x \left (\frac {a}{c}\right )^{\frac {1}{4}} + \sqrt {\frac {a}{c}}\right )}{4 \, {\left (\sqrt {2} c^{4} d^{2} + \sqrt {2} a c^{3} e^{2}\right )}} + \frac {{\left (\left (a c^{3}\right )^{\frac {1}{4}} c^{2} d + \left (a c^{3}\right )^{\frac {3}{4}} e\right )} \log \left (x^{2} - \sqrt {2} x \left (\frac {a}{c}\right )^{\frac {1}{4}} + \sqrt {\frac {a}{c}}\right )}{4 \, {\left (\sqrt {2} c^{4} d^{2} + \sqrt {2} a c^{3} e^{2}\right )}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^4/(e*x^2+d)/(c*x^4+a),x, algorithm="giac")

[Out]

d^(3/2)*arctan(x*e^(1/2)/sqrt(d))*e^(-1/2)/(c*d^2 + a*e^2) - 1/2*((a*c^3)^(1/4)*c^2*d - (a*c^3)^(3/4)*e)*arcta
n(1/2*sqrt(2)*(2*x + sqrt(2)*(a/c)^(1/4))/(a/c)^(1/4))/(sqrt(2)*c^4*d^2 + sqrt(2)*a*c^3*e^2) - 1/2*((a*c^3)^(1
/4)*c^2*d - (a*c^3)^(3/4)*e)*arctan(1/2*sqrt(2)*(2*x - sqrt(2)*(a/c)^(1/4))/(a/c)^(1/4))/(sqrt(2)*c^4*d^2 + sq
rt(2)*a*c^3*e^2) - 1/4*((a*c^3)^(1/4)*c^2*d + (a*c^3)^(3/4)*e)*log(x^2 + sqrt(2)*x*(a/c)^(1/4) + sqrt(a/c))/(s
qrt(2)*c^4*d^2 + sqrt(2)*a*c^3*e^2) + 1/4*((a*c^3)^(1/4)*c^2*d + (a*c^3)^(3/4)*e)*log(x^2 - sqrt(2)*x*(a/c)^(1
/4) + sqrt(a/c))/(sqrt(2)*c^4*d^2 + sqrt(2)*a*c^3*e^2)

________________________________________________________________________________________

maple [A]  time = 0.01, size = 363, normalized size = 1.08 \[ \frac {d^{2} \arctan \left (\frac {e x}{\sqrt {d e}}\right )}{\left (a \,e^{2}+c \,d^{2}\right ) \sqrt {d e}}+\frac {\sqrt {2}\, a e \arctan \left (\frac {\sqrt {2}\, x}{\left (\frac {a}{c}\right )^{\frac {1}{4}}}-1\right )}{4 \left (a \,e^{2}+c \,d^{2}\right ) \left (\frac {a}{c}\right )^{\frac {1}{4}} c}+\frac {\sqrt {2}\, a e \arctan \left (\frac {\sqrt {2}\, x}{\left (\frac {a}{c}\right )^{\frac {1}{4}}}+1\right )}{4 \left (a \,e^{2}+c \,d^{2}\right ) \left (\frac {a}{c}\right )^{\frac {1}{4}} c}+\frac {\sqrt {2}\, a e \ln \left (\frac {x^{2}-\left (\frac {a}{c}\right )^{\frac {1}{4}} \sqrt {2}\, x +\sqrt {\frac {a}{c}}}{x^{2}+\left (\frac {a}{c}\right )^{\frac {1}{4}} \sqrt {2}\, x +\sqrt {\frac {a}{c}}}\right )}{8 \left (a \,e^{2}+c \,d^{2}\right ) \left (\frac {a}{c}\right )^{\frac {1}{4}} c}-\frac {\left (\frac {a}{c}\right )^{\frac {1}{4}} \sqrt {2}\, d \arctan \left (\frac {\sqrt {2}\, x}{\left (\frac {a}{c}\right )^{\frac {1}{4}}}-1\right )}{4 \left (a \,e^{2}+c \,d^{2}\right )}-\frac {\left (\frac {a}{c}\right )^{\frac {1}{4}} \sqrt {2}\, d \arctan \left (\frac {\sqrt {2}\, x}{\left (\frac {a}{c}\right )^{\frac {1}{4}}}+1\right )}{4 \left (a \,e^{2}+c \,d^{2}\right )}-\frac {\left (\frac {a}{c}\right )^{\frac {1}{4}} \sqrt {2}\, d \ln \left (\frac {x^{2}+\left (\frac {a}{c}\right )^{\frac {1}{4}} \sqrt {2}\, x +\sqrt {\frac {a}{c}}}{x^{2}-\left (\frac {a}{c}\right )^{\frac {1}{4}} \sqrt {2}\, x +\sqrt {\frac {a}{c}}}\right )}{8 \left (a \,e^{2}+c \,d^{2}\right )} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^4/(e*x^2+d)/(c*x^4+a),x)

[Out]

-1/8/(a*e^2+c*d^2)*d*(a/c)^(1/4)*2^(1/2)*ln((x^2+(a/c)^(1/4)*2^(1/2)*x+(a/c)^(1/2))/(x^2-(a/c)^(1/4)*2^(1/2)*x
+(a/c)^(1/2)))-1/4/(a*e^2+c*d^2)*d*(a/c)^(1/4)*2^(1/2)*arctan(2^(1/2)/(a/c)^(1/4)*x+1)-1/4/(a*e^2+c*d^2)*d*(a/
c)^(1/4)*2^(1/2)*arctan(2^(1/2)/(a/c)^(1/4)*x-1)+1/8*a/(a*e^2+c*d^2)*e/c/(a/c)^(1/4)*2^(1/2)*ln((x^2-(a/c)^(1/
4)*2^(1/2)*x+(a/c)^(1/2))/(x^2+(a/c)^(1/4)*2^(1/2)*x+(a/c)^(1/2)))+1/4*a/(a*e^2+c*d^2)*e/c/(a/c)^(1/4)*2^(1/2)
*arctan(2^(1/2)/(a/c)^(1/4)*x+1)+1/4*a/(a*e^2+c*d^2)*e/c/(a/c)^(1/4)*2^(1/2)*arctan(2^(1/2)/(a/c)^(1/4)*x-1)+d
^2/(a*e^2+c*d^2)/(d*e)^(1/2)*arctan(1/(d*e)^(1/2)*e*x)

________________________________________________________________________________________

maxima [A]  time = 2.63, size = 268, normalized size = 0.80 \[ \frac {d^{2} \arctan \left (\frac {e x}{\sqrt {d e}}\right )}{{\left (c d^{2} + a e^{2}\right )} \sqrt {d e}} - \frac {a {\left (\frac {2 \, \sqrt {2} {\left (\sqrt {c} d - \sqrt {a} e\right )} \arctan \left (\frac {\sqrt {2} {\left (2 \, \sqrt {c} x + \sqrt {2} a^{\frac {1}{4}} c^{\frac {1}{4}}\right )}}{2 \, \sqrt {\sqrt {a} \sqrt {c}}}\right )}{\sqrt {a} \sqrt {\sqrt {a} \sqrt {c}} \sqrt {c}} + \frac {2 \, \sqrt {2} {\left (\sqrt {c} d - \sqrt {a} e\right )} \arctan \left (\frac {\sqrt {2} {\left (2 \, \sqrt {c} x - \sqrt {2} a^{\frac {1}{4}} c^{\frac {1}{4}}\right )}}{2 \, \sqrt {\sqrt {a} \sqrt {c}}}\right )}{\sqrt {a} \sqrt {\sqrt {a} \sqrt {c}} \sqrt {c}} + \frac {\sqrt {2} {\left (\sqrt {c} d + \sqrt {a} e\right )} \log \left (\sqrt {c} x^{2} + \sqrt {2} a^{\frac {1}{4}} c^{\frac {1}{4}} x + \sqrt {a}\right )}{a^{\frac {3}{4}} c^{\frac {3}{4}}} - \frac {\sqrt {2} {\left (\sqrt {c} d + \sqrt {a} e\right )} \log \left (\sqrt {c} x^{2} - \sqrt {2} a^{\frac {1}{4}} c^{\frac {1}{4}} x + \sqrt {a}\right )}{a^{\frac {3}{4}} c^{\frac {3}{4}}}\right )}}{8 \, {\left (c d^{2} + a e^{2}\right )}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^4/(e*x^2+d)/(c*x^4+a),x, algorithm="maxima")

[Out]

d^2*arctan(e*x/sqrt(d*e))/((c*d^2 + a*e^2)*sqrt(d*e)) - 1/8*a*(2*sqrt(2)*(sqrt(c)*d - sqrt(a)*e)*arctan(1/2*sq
rt(2)*(2*sqrt(c)*x + sqrt(2)*a^(1/4)*c^(1/4))/sqrt(sqrt(a)*sqrt(c)))/(sqrt(a)*sqrt(sqrt(a)*sqrt(c))*sqrt(c)) +
 2*sqrt(2)*(sqrt(c)*d - sqrt(a)*e)*arctan(1/2*sqrt(2)*(2*sqrt(c)*x - sqrt(2)*a^(1/4)*c^(1/4))/sqrt(sqrt(a)*sqr
t(c)))/(sqrt(a)*sqrt(sqrt(a)*sqrt(c))*sqrt(c)) + sqrt(2)*(sqrt(c)*d + sqrt(a)*e)*log(sqrt(c)*x^2 + sqrt(2)*a^(
1/4)*c^(1/4)*x + sqrt(a))/(a^(3/4)*c^(3/4)) - sqrt(2)*(sqrt(c)*d + sqrt(a)*e)*log(sqrt(c)*x^2 - sqrt(2)*a^(1/4
)*c^(1/4)*x + sqrt(a))/(a^(3/4)*c^(3/4)))/(c*d^2 + a*e^2)

________________________________________________________________________________________

mupad [B]  time = 2.20, size = 5111, normalized size = 15.21 \[ \text {result too large to display} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^4/((a + c*x^4)*(d + e*x^2)),x)

[Out]

atan(-((((a*e^2*(-a*c^3)^(1/2) - c*d^2*(-a*c^3)^(1/2) + 2*a*c^2*d*e)/(16*(c^5*d^4 + a^2*c^3*e^4 + 2*a*c^4*d^2*
e^2)))^(1/2)*((x*(112*a^4*c^3*d*e^6 + 112*a^2*c^5*d^5*e^2 - 32*a^3*c^4*d^3*e^4) + ((a*e^2*(-a*c^3)^(1/2) - c*d
^2*(-a*c^3)^(1/2) + 2*a*c^2*d*e)/(16*(c^5*d^4 + a^2*c^3*e^4 + 2*a*c^4*d^2*e^2)))^(1/2)*(64*a^2*c^6*d^6*e^2 - x
*((a*e^2*(-a*c^3)^(1/2) - c*d^2*(-a*c^3)^(1/2) + 2*a*c^2*d*e)/(16*(c^5*d^4 + a^2*c^3*e^4 + 2*a*c^4*d^2*e^2)))^
(1/2)*(512*a^5*c^4*e^9 - 512*a^2*c^7*d^6*e^3 - 512*a^3*c^6*d^4*e^5 + 512*a^4*c^5*d^2*e^7) + 128*a^3*c^5*d^4*e^
4 + 64*a^4*c^4*d^2*e^6))*((a*e^2*(-a*c^3)^(1/2) - c*d^2*(-a*c^3)^(1/2) + 2*a*c^2*d*e)/(16*(c^5*d^4 + a^2*c^3*e
^4 + 2*a*c^4*d^2*e^2)))^(1/2) + 16*a^2*c^4*d^5*e + 4*a^4*c^2*d*e^5 - 60*a^3*c^3*d^3*e^3) - x*(2*a^4*c*e^5 + 4*
a^2*c^3*d^4*e))*((a*e^2*(-a*c^3)^(1/2) - c*d^2*(-a*c^3)^(1/2) + 2*a*c^2*d*e)/(16*(c^5*d^4 + a^2*c^3*e^4 + 2*a*
c^4*d^2*e^2)))^(1/2)*1i + (((a*e^2*(-a*c^3)^(1/2) - c*d^2*(-a*c^3)^(1/2) + 2*a*c^2*d*e)/(16*(c^5*d^4 + a^2*c^3
*e^4 + 2*a*c^4*d^2*e^2)))^(1/2)*((x*(112*a^4*c^3*d*e^6 + 112*a^2*c^5*d^5*e^2 - 32*a^3*c^4*d^3*e^4) - ((a*e^2*(
-a*c^3)^(1/2) - c*d^2*(-a*c^3)^(1/2) + 2*a*c^2*d*e)/(16*(c^5*d^4 + a^2*c^3*e^4 + 2*a*c^4*d^2*e^2)))^(1/2)*(x*(
(a*e^2*(-a*c^3)^(1/2) - c*d^2*(-a*c^3)^(1/2) + 2*a*c^2*d*e)/(16*(c^5*d^4 + a^2*c^3*e^4 + 2*a*c^4*d^2*e^2)))^(1
/2)*(512*a^5*c^4*e^9 - 512*a^2*c^7*d^6*e^3 - 512*a^3*c^6*d^4*e^5 + 512*a^4*c^5*d^2*e^7) + 64*a^2*c^6*d^6*e^2 +
 128*a^3*c^5*d^4*e^4 + 64*a^4*c^4*d^2*e^6))*((a*e^2*(-a*c^3)^(1/2) - c*d^2*(-a*c^3)^(1/2) + 2*a*c^2*d*e)/(16*(
c^5*d^4 + a^2*c^3*e^4 + 2*a*c^4*d^2*e^2)))^(1/2) - 16*a^2*c^4*d^5*e - 4*a^4*c^2*d*e^5 + 60*a^3*c^3*d^3*e^3) -
x*(2*a^4*c*e^5 + 4*a^2*c^3*d^4*e))*((a*e^2*(-a*c^3)^(1/2) - c*d^2*(-a*c^3)^(1/2) + 2*a*c^2*d*e)/(16*(c^5*d^4 +
 a^2*c^3*e^4 + 2*a*c^4*d^2*e^2)))^(1/2)*1i)/((((a*e^2*(-a*c^3)^(1/2) - c*d^2*(-a*c^3)^(1/2) + 2*a*c^2*d*e)/(16
*(c^5*d^4 + a^2*c^3*e^4 + 2*a*c^4*d^2*e^2)))^(1/2)*((x*(112*a^4*c^3*d*e^6 + 112*a^2*c^5*d^5*e^2 - 32*a^3*c^4*d
^3*e^4) + ((a*e^2*(-a*c^3)^(1/2) - c*d^2*(-a*c^3)^(1/2) + 2*a*c^2*d*e)/(16*(c^5*d^4 + a^2*c^3*e^4 + 2*a*c^4*d^
2*e^2)))^(1/2)*(64*a^2*c^6*d^6*e^2 - x*((a*e^2*(-a*c^3)^(1/2) - c*d^2*(-a*c^3)^(1/2) + 2*a*c^2*d*e)/(16*(c^5*d
^4 + a^2*c^3*e^4 + 2*a*c^4*d^2*e^2)))^(1/2)*(512*a^5*c^4*e^9 - 512*a^2*c^7*d^6*e^3 - 512*a^3*c^6*d^4*e^5 + 512
*a^4*c^5*d^2*e^7) + 128*a^3*c^5*d^4*e^4 + 64*a^4*c^4*d^2*e^6))*((a*e^2*(-a*c^3)^(1/2) - c*d^2*(-a*c^3)^(1/2) +
 2*a*c^2*d*e)/(16*(c^5*d^4 + a^2*c^3*e^4 + 2*a*c^4*d^2*e^2)))^(1/2) + 16*a^2*c^4*d^5*e + 4*a^4*c^2*d*e^5 - 60*
a^3*c^3*d^3*e^3) - x*(2*a^4*c*e^5 + 4*a^2*c^3*d^4*e))*((a*e^2*(-a*c^3)^(1/2) - c*d^2*(-a*c^3)^(1/2) + 2*a*c^2*
d*e)/(16*(c^5*d^4 + a^2*c^3*e^4 + 2*a*c^4*d^2*e^2)))^(1/2) - (((a*e^2*(-a*c^3)^(1/2) - c*d^2*(-a*c^3)^(1/2) +
2*a*c^2*d*e)/(16*(c^5*d^4 + a^2*c^3*e^4 + 2*a*c^4*d^2*e^2)))^(1/2)*((x*(112*a^4*c^3*d*e^6 + 112*a^2*c^5*d^5*e^
2 - 32*a^3*c^4*d^3*e^4) - ((a*e^2*(-a*c^3)^(1/2) - c*d^2*(-a*c^3)^(1/2) + 2*a*c^2*d*e)/(16*(c^5*d^4 + a^2*c^3*
e^4 + 2*a*c^4*d^2*e^2)))^(1/2)*(x*((a*e^2*(-a*c^3)^(1/2) - c*d^2*(-a*c^3)^(1/2) + 2*a*c^2*d*e)/(16*(c^5*d^4 +
a^2*c^3*e^4 + 2*a*c^4*d^2*e^2)))^(1/2)*(512*a^5*c^4*e^9 - 512*a^2*c^7*d^6*e^3 - 512*a^3*c^6*d^4*e^5 + 512*a^4*
c^5*d^2*e^7) + 64*a^2*c^6*d^6*e^2 + 128*a^3*c^5*d^4*e^4 + 64*a^4*c^4*d^2*e^6))*((a*e^2*(-a*c^3)^(1/2) - c*d^2*
(-a*c^3)^(1/2) + 2*a*c^2*d*e)/(16*(c^5*d^4 + a^2*c^3*e^4 + 2*a*c^4*d^2*e^2)))^(1/2) - 16*a^2*c^4*d^5*e - 4*a^4
*c^2*d*e^5 + 60*a^3*c^3*d^3*e^3) - x*(2*a^4*c*e^5 + 4*a^2*c^3*d^4*e))*((a*e^2*(-a*c^3)^(1/2) - c*d^2*(-a*c^3)^
(1/2) + 2*a*c^2*d*e)/(16*(c^5*d^4 + a^2*c^3*e^4 + 2*a*c^4*d^2*e^2)))^(1/2) + 2*a^3*c*d^2*e^2))*((a*e^2*(-a*c^3
)^(1/2) - c*d^2*(-a*c^3)^(1/2) + 2*a*c^2*d*e)/(16*(c^5*d^4 + a^2*c^3*e^4 + 2*a*c^4*d^2*e^2)))^(1/2)*2i + atan(
-((((c*d^2*(-a*c^3)^(1/2) - a*e^2*(-a*c^3)^(1/2) + 2*a*c^2*d*e)/(16*(c^5*d^4 + a^2*c^3*e^4 + 2*a*c^4*d^2*e^2))
)^(1/2)*((x*(112*a^4*c^3*d*e^6 + 112*a^2*c^5*d^5*e^2 - 32*a^3*c^4*d^3*e^4) + ((c*d^2*(-a*c^3)^(1/2) - a*e^2*(-
a*c^3)^(1/2) + 2*a*c^2*d*e)/(16*(c^5*d^4 + a^2*c^3*e^4 + 2*a*c^4*d^2*e^2)))^(1/2)*(64*a^2*c^6*d^6*e^2 - x*((c*
d^2*(-a*c^3)^(1/2) - a*e^2*(-a*c^3)^(1/2) + 2*a*c^2*d*e)/(16*(c^5*d^4 + a^2*c^3*e^4 + 2*a*c^4*d^2*e^2)))^(1/2)
*(512*a^5*c^4*e^9 - 512*a^2*c^7*d^6*e^3 - 512*a^3*c^6*d^4*e^5 + 512*a^4*c^5*d^2*e^7) + 128*a^3*c^5*d^4*e^4 + 6
4*a^4*c^4*d^2*e^6))*((c*d^2*(-a*c^3)^(1/2) - a*e^2*(-a*c^3)^(1/2) + 2*a*c^2*d*e)/(16*(c^5*d^4 + a^2*c^3*e^4 +
2*a*c^4*d^2*e^2)))^(1/2) + 16*a^2*c^4*d^5*e + 4*a^4*c^2*d*e^5 - 60*a^3*c^3*d^3*e^3) - x*(2*a^4*c*e^5 + 4*a^2*c
^3*d^4*e))*((c*d^2*(-a*c^3)^(1/2) - a*e^2*(-a*c^3)^(1/2) + 2*a*c^2*d*e)/(16*(c^5*d^4 + a^2*c^3*e^4 + 2*a*c^4*d
^2*e^2)))^(1/2)*1i + (((c*d^2*(-a*c^3)^(1/2) - a*e^2*(-a*c^3)^(1/2) + 2*a*c^2*d*e)/(16*(c^5*d^4 + a^2*c^3*e^4
+ 2*a*c^4*d^2*e^2)))^(1/2)*((x*(112*a^4*c^3*d*e^6 + 112*a^2*c^5*d^5*e^2 - 32*a^3*c^4*d^3*e^4) - ((c*d^2*(-a*c^
3)^(1/2) - a*e^2*(-a*c^3)^(1/2) + 2*a*c^2*d*e)/(16*(c^5*d^4 + a^2*c^3*e^4 + 2*a*c^4*d^2*e^2)))^(1/2)*(x*((c*d^
2*(-a*c^3)^(1/2) - a*e^2*(-a*c^3)^(1/2) + 2*a*c^2*d*e)/(16*(c^5*d^4 + a^2*c^3*e^4 + 2*a*c^4*d^2*e^2)))^(1/2)*(
512*a^5*c^4*e^9 - 512*a^2*c^7*d^6*e^3 - 512*a^3*c^6*d^4*e^5 + 512*a^4*c^5*d^2*e^7) + 64*a^2*c^6*d^6*e^2 + 128*
a^3*c^5*d^4*e^4 + 64*a^4*c^4*d^2*e^6))*((c*d^2*(-a*c^3)^(1/2) - a*e^2*(-a*c^3)^(1/2) + 2*a*c^2*d*e)/(16*(c^5*d
^4 + a^2*c^3*e^4 + 2*a*c^4*d^2*e^2)))^(1/2) - 16*a^2*c^4*d^5*e - 4*a^4*c^2*d*e^5 + 60*a^3*c^3*d^3*e^3) - x*(2*
a^4*c*e^5 + 4*a^2*c^3*d^4*e))*((c*d^2*(-a*c^3)^(1/2) - a*e^2*(-a*c^3)^(1/2) + 2*a*c^2*d*e)/(16*(c^5*d^4 + a^2*
c^3*e^4 + 2*a*c^4*d^2*e^2)))^(1/2)*1i)/((((c*d^2*(-a*c^3)^(1/2) - a*e^2*(-a*c^3)^(1/2) + 2*a*c^2*d*e)/(16*(c^5
*d^4 + a^2*c^3*e^4 + 2*a*c^4*d^2*e^2)))^(1/2)*((x*(112*a^4*c^3*d*e^6 + 112*a^2*c^5*d^5*e^2 - 32*a^3*c^4*d^3*e^
4) + ((c*d^2*(-a*c^3)^(1/2) - a*e^2*(-a*c^3)^(1/2) + 2*a*c^2*d*e)/(16*(c^5*d^4 + a^2*c^3*e^4 + 2*a*c^4*d^2*e^2
)))^(1/2)*(64*a^2*c^6*d^6*e^2 - x*((c*d^2*(-a*c^3)^(1/2) - a*e^2*(-a*c^3)^(1/2) + 2*a*c^2*d*e)/(16*(c^5*d^4 +
a^2*c^3*e^4 + 2*a*c^4*d^2*e^2)))^(1/2)*(512*a^5*c^4*e^9 - 512*a^2*c^7*d^6*e^3 - 512*a^3*c^6*d^4*e^5 + 512*a^4*
c^5*d^2*e^7) + 128*a^3*c^5*d^4*e^4 + 64*a^4*c^4*d^2*e^6))*((c*d^2*(-a*c^3)^(1/2) - a*e^2*(-a*c^3)^(1/2) + 2*a*
c^2*d*e)/(16*(c^5*d^4 + a^2*c^3*e^4 + 2*a*c^4*d^2*e^2)))^(1/2) + 16*a^2*c^4*d^5*e + 4*a^4*c^2*d*e^5 - 60*a^3*c
^3*d^3*e^3) - x*(2*a^4*c*e^5 + 4*a^2*c^3*d^4*e))*((c*d^2*(-a*c^3)^(1/2) - a*e^2*(-a*c^3)^(1/2) + 2*a*c^2*d*e)/
(16*(c^5*d^4 + a^2*c^3*e^4 + 2*a*c^4*d^2*e^2)))^(1/2) - (((c*d^2*(-a*c^3)^(1/2) - a*e^2*(-a*c^3)^(1/2) + 2*a*c
^2*d*e)/(16*(c^5*d^4 + a^2*c^3*e^4 + 2*a*c^4*d^2*e^2)))^(1/2)*((x*(112*a^4*c^3*d*e^6 + 112*a^2*c^5*d^5*e^2 - 3
2*a^3*c^4*d^3*e^4) - ((c*d^2*(-a*c^3)^(1/2) - a*e^2*(-a*c^3)^(1/2) + 2*a*c^2*d*e)/(16*(c^5*d^4 + a^2*c^3*e^4 +
 2*a*c^4*d^2*e^2)))^(1/2)*(x*((c*d^2*(-a*c^3)^(1/2) - a*e^2*(-a*c^3)^(1/2) + 2*a*c^2*d*e)/(16*(c^5*d^4 + a^2*c
^3*e^4 + 2*a*c^4*d^2*e^2)))^(1/2)*(512*a^5*c^4*e^9 - 512*a^2*c^7*d^6*e^3 - 512*a^3*c^6*d^4*e^5 + 512*a^4*c^5*d
^2*e^7) + 64*a^2*c^6*d^6*e^2 + 128*a^3*c^5*d^4*e^4 + 64*a^4*c^4*d^2*e^6))*((c*d^2*(-a*c^3)^(1/2) - a*e^2*(-a*c
^3)^(1/2) + 2*a*c^2*d*e)/(16*(c^5*d^4 + a^2*c^3*e^4 + 2*a*c^4*d^2*e^2)))^(1/2) - 16*a^2*c^4*d^5*e - 4*a^4*c^2*
d*e^5 + 60*a^3*c^3*d^3*e^3) - x*(2*a^4*c*e^5 + 4*a^2*c^3*d^4*e))*((c*d^2*(-a*c^3)^(1/2) - a*e^2*(-a*c^3)^(1/2)
 + 2*a*c^2*d*e)/(16*(c^5*d^4 + a^2*c^3*e^4 + 2*a*c^4*d^2*e^2)))^(1/2) + 2*a^3*c*d^2*e^2))*((c*d^2*(-a*c^3)^(1/
2) - a*e^2*(-a*c^3)^(1/2) + 2*a*c^2*d*e)/(16*(c^5*d^4 + a^2*c^3*e^4 + 2*a*c^4*d^2*e^2)))^(1/2)*2i - (log(16*c^
3*x*(-d^3*e)^(5/2) + a^3*d^2*e^8 + 16*c^3*d^8*e^2 + 17*a*c^2*d^6*e^4 + 2*a^2*c*d^4*e^6 + a^3*e^8*x*(-d^3*e)^(1
/2) - 17*a*c^2*d*e^3*x*(-d^3*e)^(3/2) + 2*a^2*c*d^2*e^6*x*(-d^3*e)^(1/2))*(-d^3*e)^(1/2))/(2*(a*e^3 + c*d^2*e)
) + (log(a^3*d^2*e^8 - 16*c^3*x*(-d^3*e)^(5/2) + 16*c^3*d^8*e^2 + 17*a*c^2*d^6*e^4 + 2*a^2*c*d^4*e^6 - a^3*e^8
*x*(-d^3*e)^(1/2) + 17*a*c^2*d*e^3*x*(-d^3*e)^(3/2) - 2*a^2*c*d^2*e^6*x*(-d^3*e)^(1/2))*(-d^3*e)^(1/2))/(2*a*e
^3 + 2*c*d^2*e)

________________________________________________________________________________________

sympy [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**4/(e*x**2+d)/(c*x**4+a),x)

[Out]

Timed out

________________________________________________________________________________________